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It's not just Hot Standby
● Builds on Warm Standby
● Becomes powerful with Streaming 

Replication
● 1+1 = 3 (or more!)
● So let's discuss them all



  

Warm Standby
● Introduced in PostgreSQL 8.2

– Actually existed before, but not included 
in core, and with many caveats

● Based on transaction log
● Same as Point In Time Recovery
● Runs normal crash recovery code

– Just never finishes



  

PITR – Archive Logging

Database

Archive
location

archive_command = 'rsync ...'



  

Point In Time Recovery
● Each log file (16MB) shipped when 

filled with data
● Or when archive_timeout has 

expired
● Leaves dataloss window at max 

archive_timeout



  

PITR – Recovery

Database

Archive
location

restore_command = 'rsync ...'



  

PITR - Recovery
● Reads all transaction log files
● Until there are no more, or until 

recovery time has been reached
● Re-applies all changes sequentially



  

DEMO
● (that's never going to work)



  

Warm Standby
● Combine log archiving and PITR 

recovery
● Just never finish recovery
● Reference implementation: 

pg_standby in contrib
● Polls for new logs until trigger



  

Warm Standby

Master

Archive
location

archive_command = 'rsync ...'

Slave

restore_command = 'pg_standby ...'



  

DEMO
● (he's clearly insane)



  

Streaming Replication
● Problem: high archive_timeout 

leads to high latency
● Problem: low archive_timeout 

leads to excessive disk and I/O
● Solution: Streaming Replication



  

Streaming Replication

Master

Archive
location

archive_command = 'rsync ...'

Slave

restore_command = 'pg_standby ...'

host=192.168.1.1 database=replication



  

Streaming Replication
● First uses regular full backup to 

get a baseline
● Second uses regular 

restore_command to catch up
● Third, enables streaming mode



  

DEMO
● (another demo? It'll break!)



  

Streaming Replication
● Replicated data is sent in near 

real-time
– Default wal_sender_delay = 200ms

● Terminated by trigger
– If no trigger, never stops



  

Hot Standby
● Works in combination with 

Streaming Replication
● Or with pg_standby
● Or, actually, with regular recovery



  

Hot Standby
● Warm standby isn't even read-only
● You can't do anything until it's 

«opened»
● Once «opened», has to restart to 

catch up
● Set recovery_connections=On...



  

DEMO
● (whatever worked so far, must be 

pure luck)



  

Hot Standby
● Slave becomes read only
● No DDL, no DML, no share locks, 

no exclusive locks, no two-phase 
commit, no sequence changes

● Not even temporary tables!



  

Hot Standby
● Transaction isolation works
● Between master and slave
● MVCC snapshots preserved



  

Query Conflicts
● Master changes will conflict with 

slave, when long-running queries
– Access Exclusive locks
– Dropping tablespaces
– Dropping databases
– «Early cleanup» in btree, HOT

● Yes, we've implemented «snapshot 
too old»



  

Query Conflicts
● max_standby_delay

– Controls how long we wait to apply log
– When there is an active query on the 

slave
– Then we just kill it
– A tradeoff between availability and 

«reporting»



  

Query Conflicts
● vacuum_defer_cleanup_age

– On the master
– Delays how long it takes before VACUUM 

attempts to clean up
– Increases bloat on master!



  

Summary
● There are obvious tradeoffs

– Particularly in Hot Standby

● We want to know how it works in 
your environment!

● Download 9.0alpha4 and test, test, 
test and test!



  

Oh, and did I mention?
● Please test this for us!



  

Thank You!

Questions?

magnus@hagander.net
http://blog.hagander.net/
Twitter: magnushagander

FreeNode: #postgresql:magnush
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