

Temperature rising:

Hot Standby
In PostgreSQL 9.0

Open Source Days, March 2010
Copenhagen, Denmark

Magnus Hagander
Redpill Linpro AB

Consulting ● Development ● IT Operations ● Training ● Support ● Products

It's not just Hot Standby
● Builds on Warm Standby
● Becomes powerful with Streaming

Replication
● 1+1 = 3 (or more!)
● So let's discuss them all

Warm Standby
● Introduced in PostgreSQL 8.2

– Actually existed before, but not included
in core, and with many caveats

● Based on transaction log
● Same as Point In Time Recovery
● Runs normal crash recovery code

– Just never finishes

PITR – Archive Logging

Database

Archive
location

archive_command = 'rsync ...'

Point In Time Recovery
● Each log file (16MB) shipped when

filled with data
● Or when archive_timeout has

expired
● Leaves dataloss window at max

archive_timeout

PITR – Recovery

Database

Archive
location

restore_command = 'rsync ...'

PITR - Recovery
● Reads all transaction log files
● Until there are no more, or until

recovery time has been reached
● Re-applies all changes sequentially

DEMO
● (that's never going to work)

Warm Standby
● Combine log archiving and PITR

recovery
● Just never finish recovery
● Reference implementation:

pg_standby in contrib
● Polls for new logs until trigger

Warm Standby

Master

Archive
location

archive_command = 'rsync ...'

Slave

restore_command = 'pg_standby ...'

DEMO
● (he's clearly insane)

Streaming Replication
● Problem: high archive_timeout

leads to high latency
● Problem: low archive_timeout

leads to excessive disk and I/O
● Solution: Streaming Replication

Streaming Replication

Master

Archive
location

archive_command = 'rsync ...'

Slave

restore_command = 'pg_standby ...'

host=192.168.1.1 database=replication

Streaming Replication
● First uses regular full backup to

get a baseline
● Second uses regular

restore_command to catch up
● Third, enables streaming mode

DEMO
● (another demo? It'll break!)

Streaming Replication
● Replicated data is sent in near

real-time
– Default wal_sender_delay = 200ms

● Terminated by trigger
– If no trigger, never stops

Hot Standby
● Works in combination with

Streaming Replication
● Or with pg_standby
● Or, actually, with regular recovery

Hot Standby
● Warm standby isn't even read-only
● You can't do anything until it's

«opened»
● Once «opened», has to restart to

catch up
● Set recovery_connections=On...

DEMO
● (whatever worked so far, must be

pure luck)

Hot Standby
● Slave becomes read only
● No DDL, no DML, no share locks,

no exclusive locks, no two-phase
commit, no sequence changes

● Not even temporary tables!

Hot Standby
● Transaction isolation works
● Between master and slave
● MVCC snapshots preserved

Query Conflicts
● Master changes will conflict with

slave, when long-running queries
– Access Exclusive locks
– Dropping tablespaces
– Dropping databases
– «Early cleanup» in btree, HOT

● Yes, we've implemented «snapshot
too old»

Query Conflicts
● max_standby_delay

– Controls how long we wait to apply log
– When there is an active query on the

slave
– Then we just kill it
– A tradeoff between availability and

«reporting»

Query Conflicts
● vacuum_defer_cleanup_age

– On the master
– Delays how long it takes before VACUUM

attempts to clean up
– Increases bloat on master!

Summary
● There are obvious tradeoffs

– Particularly in Hot Standby

● We want to know how it works in
your environment!

● Download 9.0alpha4 and test, test,
test and test!

Oh, and did I mention?
● Please test this for us!

Thank You!

Questions?

magnus@hagander.net
http://blog.hagander.net/
Twitter: magnushagander

FreeNode: #postgresql:magnush

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

